Analog and Digital Effects Processing Technology (ADEPT)

<u>Group C</u> Diego Conterno - CpE Tyler Michaud - EE Alejandro Porcar - CpE Dylan Walter - EE

Goals and Objectives

Motivation

- Open Source Musical Instrument Effects Processor
- Fusion of audio engineering, music technology, and sound design
- Close the gap between technology and music
- Provide new alternatives for musicians who want to stand out and shape their sound in a unique way
- Have a creative impact on musicians with an interest in electrical and computer engineering
- Realistic usable product for musicians and electronics hobbyists

Goals & Objectives

- Portable
- Affordable
- Easy to Use
- Low Current Draw
- Low Noise Level
- Reliable

Requirements and Specifications

- Analog-to-Digital Conversion
- Minimal Added Noise (less than -14dB)
- High Input Impedance (~450k Ω)
- Low Output Impedance (~450Ω)
- Looper/Dual Footswitch Functionality
- Standard ¼" Instrument Cable Compatibility
- 9V Power
- JTAG/SWD Programmability
- LCD Menu and Selection Screen

Hardware + PCB Design

Schematic

PCB Layout

- Layout done using AutoCAD Eagle
- 2 board layers for simplicity
- Default trace widths and spacing used
- Utilized the tRestrict, bRestrict, and vRestrict layers to stop noisy traces from interfering with crystal oscillators.
- PCB Dimensions: 116.5mm x 88.90mm

PCB Layout

- PCB Fabrication done by OSH Park
- Both through-hole (THT) and surface mount (SMT) components integrated in our design

PCB Enclosure

- Hammond 1590XX enclosure
- Enclosure designed using AutoDesk Fusion 360
- Able to make precise measurements based on component and PCB dimensions

Footswitches

- 3PDT (3-Pole, Double Throw) mechanical true bypass latching footswitch
 - Used to turn the effect on and off
- SPST (Single Pole, Single Throw) momentary footswitch
 - Used for tap tempo and looper
- These plunge-type footswitches are the standard for guitar effects pedals due to their ability to be activated hands-free. Therefore, there was no need for a comparison with other types of switches.

Tone and Volume Controls

- Tone Control
 - Adjusts the cutoff frequency of the instrument signal in order to make the effect sound brighter or darker
 - Linear Potentiometer in series with First Order RC Low Pass Filter
- Volume Control
 - Logarithmic Potentiometer placed at the end of pedal circuit to control overall volume

Tone Control Comparison

Tone Control Configuration	Number of Parts	Frequency Response	Simplicity	Cost
Bluesbreaker	3	First Order LP	Very simple	\$2.00
Big Muff	5	First Order HP/LP	Simple	\$3.50
Tube Screamer	11	Second Order LP	Complex	\$6.00

Analog Input and Output Buffers

- Active electronic circuit that can provide a change in electrical impedance.
- Maintains signal integrity going in and out of the system.
- Low energy, voltage driven signal.
- High input impedance to low output impedance.
- Emitter follower configuration (standard practice).
- 2N2222A BJT

Analog Input and Output Buffer Comparison

• -0.13 dB loss is negligible. Price outweighs performance in this case.

Buffer Type	Cost	Complexity	Performance
JFET	~\$4.24	Simple	0 dB Loss
<u>Emitter</u> Follower	<u>~\$0.43</u>	<u>Simple</u>	<u>-0.13 dB Loss</u>
Op Amp	~\$2.75	Simple	0 dB Loss

Input and Output Impedance

- High Input Impedance
- Low Output Impedance
- This was an important test to perform, since it is an important factor in the overall sound quality of our design.
- We later confirmed that these buffers greatly improved the tone and clarity of our circuit compared to connecting directly to our CODEC without the buffers.

Power (9VDC)

- 9V to 5V and 9V to 3.3V voltage regulation.
- Linear voltage regulators for microcontroller, CODEC, and flash memory.
- 78L05 for 5V and AMS1117 for 3.3V.
- Not power efficient but less noisy.
- 9V and 4.5V(using voltage divider) used to bias input and output buffers.
- Coaxial power jack(2.1mm inside diameter and 5.5mm outside diameter).
- 500mA rating.
- Proper Transient suppression and configuration

Voltage Regulator Comparison

• Switching (*MC34063ACN*) vs linear regulators (*LM1117-3.3 & LM7805*) Comparison. Linear regulators trump switching regulators for noise level and cost. No batteries needed. Therefore, power efficiency is not important.

Regulator	Noise	Avg Cost	Power efficiency
MC34063ACN	300 mVp	~\$1.00	80%-89%
LM1117-3.3	<u>53 uVp</u>	<u>~\$0.50</u>	<u>~ 50%</u>
<u>LM7805</u>	<u>40 uVp</u>	<u>~0.50</u>	<u>~ 50%</u>

Power Transient Response

- Rise times of our linear voltage regulators upon plugging in our 9VDC wall plug:
 - o 3.3V 25ms
 - o 5V 50ms
 - o 9V 80ms
- We wanted to observe the stability of transient response during power on and power off.
- Looking for overshoot or damping

Signal to Noise Ratio

- SNRdB = 10log10 (Vsignal / Vnoise)
- Vsignal = 2.7V
- Vnoise = 0.087V
- SNRdB = 14.92dB
- Original goal of 14dB reached
- SNRdB can be improved slightly via the use of the onboard tone control to remove high frequency noise.

MCU Comparison

MCU	Clock Speed	Memory	RAM	GPIO Count	Cost
FV-1	48kHz	768 B	4096 B	3	\$17.75
MSP430G2	25MHz	256 KB	512 B	16	\$2.38
Teensy 3.2	72MHz	256 KB	64 KB	40	\$11.46
STM32F446	180 MHz	256 KB	128 + 4 KB	50	\$7.45

MCU (STM32F446RE)

- Processing performance
- FPU
- Integrated configurable debug
- Cost
- DMA 1 & 2

CODEC Comparison

Name	Resolution	Max Sample Frequency	Cost
MAX98050	16, 24, 32 Bits	192 kHz	\$5.06
PCM3060	16, 24 Bits	96 kHz	\$5.69
TLV320AIC23	16, 20, 24, 32 Bits	96kHz	\$10.15

CODEC (PCM 3060)

- A CODEC contains both an ADC and DAC
- We chose the PCM 3060 because:
 - \circ 24 bit Stereo Resolution
 - Up to 96kHz Sampling rate (we are using 48kHz)
- We will be using I2S Interface to communicate with this chip

External Flash Memory

- Purpose:
 - Extra storage for audio
- Record audio at 48 kHz
 - \circ 24-bit sample resolution
- Example: 1 second track recording
 - 1 sec * 48k samples/sec * 24 bit/sample = 1152,000 bits (144 kB of memory required)
- Common recording length
 - 10 s 1 min
- 16 MB of memory available

Software + Digital Design

Software Overview

- STM32, IDE, and Drivers
- Testing & Debugging Tools
- System Concept
- UML & Firmware Architecture
- Peripherals
- Clock Configuration
- Memory Management
- Relevant Algorithms
- Effects

STM32CubeIDE & HAL

- The IDE provides a graphical software configuration tool for GPIO and clock configuration. Handles and configures the user set up.
- The IDE provides auto generated function prototypes with the configurations selected
- The HAL drivers include a complete set of ready-to-use APIs that simplify the user application implementation.

Testing and Debugging Tools

- Development board/breadboarding/prototyping
- STM32CubeIDE provides register watch as well as live expression watch of current variable values while on debugger mode
- Lab tools utilized for analyzing clock frequencies, analog input/output signals, etc.
- Development board has the same MCU (STM32F446RE)

Firmware System Concept

- The system is non-conclusive in nature, meaning that from the moment it is initiated, it won't stop until it is shut down.
- The system is centered around the "listening mode" state. (i.e. constant flow from input to output with no interruptions).
- "Encoder engaged" process in which we select an effect or the looper mode.

UML & Firmware Architecture

Main()

- SysClk, Peripherals, HAL, and variables are initialized
- In while(1) update LCD and Pot parameters.
 - If in looper mode, determine record or playback based on looper_state
- DMA1 Callbacks
 - Updates effects parameters
 - Input/output audio buffer disassembly and reassemble
 - Apply effects processing
- Encoder Interrupt
 - Update menu cursor "position" to indicate LCD update display
- LooperSwitch Interrupt
 - Update looper_state if looper mode engage

Clock Configuration

- Purpose:
 - Prevent phase shift between CODEC and MCU
- Compatibility
 - o 4 26 MHz MCU
 - 12.288 MHz CODEC
- A high speed external clock is provided to the CODEC and a separate one for the MCU.
- MCU will act as slave when communicating with CODEC through I2S.

Peripherals

- 16x2 LCD
 - Provide user with visual feedback
- Potentiometers
 - Used as dials to adjust parameters available for each effect.
 - Implemented by giving the potentiometers 3.3 volts to the input and reading the output
- Encoder
 - Gives the user the ability of scrolling through the effects menu in both directions
 - $\circ \qquad \text{Implemented using two channels of the same timer}$
- Looper Switch
 - SPST switch for looper feature commands (record, playback)
 - To implement we used external system interrupts and a timer for debouncing

Data transmission CODEC - MCU

- I2C CODEC Configuration
 - ADC Master mode
 - \circ 256 * Fs
 - DAC Master mode
 - ADC & DAC normal operation
 - DAC output single ended
- I2S MCU Configuration
 - Enable DMA with Circular mode
 - Data Width set to half-word
 - Half-duplex slave mode
- 24-bit sample in a 32-bit frame
- 48kHz sample frequency

Data transmission: Flash Memory - MCU

- Standard SPI communication
 - \circ 1 Byte transfer size with MSB Alignment
- Flash Memory is byte addressable
- Data to write to flash is grabbed from audio buffers one byte at a tir
- Data is retrieved from flash memory and fills up the audio buffer
- Implemented functions to handle transmission
 - WriteEnable()
 - SectorErase()
 - WritePage()
 - FlashRead()
 - CheckBusyBit()

Memory Management

- Our main priority is to provide a stable and reliable audio experience. Code complexity can produce a lot of slow downs that can result in a delayed output signal.
- DMA provide high-speed data transfers between peripherals-to-memory and memory-to-memory.
- Effects such as delay and reverb can be memory demanding.

Effects

- "Pipe" Effect (Allpass Filter)
 - Gain adjusted to 0.7
 - Basic building
- Delay (Comb Filter)
 - Stability of the system
 - Usage of memory

Effects (cont.)

• Reverb

- Feedforward Dry/Wet Mixer
- Distortion
 - Lower & upper Thresholds
 - Overall gain

Effects (cont.)

- Pitch-Shift
 - Shift
 - Dry/Wet Mixer
- Compressor
 - Attack
 - \circ Hold
 - Release

Pedal Layout Diagram

Physical Prototype

Administrative Content

Project Planning Tools

N

- Notion
 - Project Management
- Github
 - Code Backups and Version Control
- Google Drive
 - Store/Share Documents
- Discord
 - Team Communication

Progress Chart

Cost of Materials

Part	Cost
РСВ	\$60
PCM3060 CODEC	\$5.69
Resistors	\$2.50
Capacitors	\$2.50
Diodes	\$0.50
Transistors	\$0.25
Potentiometers	\$1.65
STM32 MCU	\$7.45
Flash Memory	\$1.69
External Oscillator	\$19.97
Switches	\$7.80
LEDs	\$0.25
Mono input/output jacks	\$4.00
Metal Enclosure	\$18.00
ST-LINK/V2 USB connector	\$5.93
Regulators	\$4.50
TOTAL	\$142.68

Progress percentage

TASK	ASSIGNED TO	PROGRESS	START	END
Research, Documentation & Design				
Block Diagram	Dylan	100%	1/25/21	1/29/21
Components and parts list	Alejandro, Dylan, Tyler, Diego	100%	1/27/21	4/1/21
Microcontroller/Microprocessor	Diego & Alejandro	100%	1/27/21	4/1/21
ADC/DAC/CODEC	Alejandro & Diego	100%	1/27/21	4/1/21
Network & connections schema	Diego & Dylan	100%	1/27/21	8/1/21
Effects	Diego & Alejandro	100%	1/27/21	8/1/21
Power supply	Tyler & Dylan	100%	1/27/21	8/1/21
PCB layout	Tyler & Dylan	100%	1/27/21	8/1/21
Development				
Tone section breadboarding	Dylan	100%	3/1/21	8/1/21
MCU/CODEC External Clock	Diego & Alejandro	100%	5/1/21	8/1/21
MCU & CODEC Communication	Diego & Alejandro	100%	5/1/21	11/14/21
Power Supply	Tyler & Dylan	100%	5/1/21	8/1/21
Systems Check Routine	Diego & Alejandro	100%	5/1/21	10/1/21
Switches & User interface	Diego & Alejandro	100%	5/1/21	11/20/21
DSP Effects	Diego & Alejandro	80%	5/1/21	11/28/21
PCB layout	Tyler & Dylan	100%	5/1/21	8/1/21

Testing & Verification				
Tone section breadboarding	Dylan	100%	3/1/21	8/1/21
MCU/CODEC External Clock	Diego & Alejandro	100%	5/1/21	8/1/21
MCU & CODEC Communication	Diego & Alejandro	100%	5/1/21	11/15/21
Power Supply	Tyler & Dylan	100%	5/1/21	8/1/21
Systems Check Routine	Diego & Alejandro	100%	5/1/21	8/1/21
Switches & User interface	Diego & Alejandro	100%	5/1/21	11/20/21
DSP Effects	Diego & Alejandro	80%	5/1/21	8/1/21
PCB layout	Tyler & Dylan	100%	5/1/21	8/1/21

Challenges

- Improper voltage level sent to the MCU
- ADC pot parameters have a small level of jitter due to 12.288MHz external clock
- CODEC-MCU communication/setup
- CODEC & Encoder interrupt in conflict
- Loss of codebase
- Flash Memory-MCU communication/setup
- Intrapersonal relations

Team Responsibilities

Diego Conterno	DSP Effects, GPIO Configurations, Project Management
Tyler Michaud	Output Buffer, Power Supply, Prototype Testing
Alejandro Porcar	ADC/DAC, LCD Menu, Looper/Tap Function
Dylan Walter	Input Buffer, Tone/Volume Control, Team Lead

Thank you!

Questions?

